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Background

Background

Among several approaches for computational modeling of land-ice evolution,
the nonlinear 3D Stokes model is generally accepted as the gold standard
for modeling the flow of ice sheets.

A nonlinear 3D Stokes ice-sheet model requires the integration of effective
meshing strategies, accurate discretization schemes, couplers for momentum,
energy and mass balance components, efficient and scalable parallel solvers.

The current widely-used reduced models: zeroth-order models (shallow-ice,
shallow-shelf) and first-order models (L1L2, Blatter-Pattyn) are all obtained
as reduced forms of the 3D Stokes model by means of scaling analyses, but,
with an attendant loss of fidelity.

A finite element full-Stokes model: Elmer [Le Meur and et. al., 2004]

The PISCEES project (Predicting Ice Sheet and Climate Evolution at
Extreme Scales, 2012-2017) funded by US DoE Office of Science.

FELIX – Finite Element Land Ice eXperiments
Our task: FELIX-Stokes.
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Mathematical Modeling of Ice Sheet Flow

Ice Sheet Dynamics: 3D Stokes Equations

The dynamical behavior of the ice sheet is modeled by the nonlinear Stokes
equations for an incompressible viscous fluid in a low Reynolds-number flow over
the time interval [0, tmax ] and in the three-dimensional spatial domain Ωt

occupied by the ice sheet:

ρ
du

dt
= ∇ · σ + ρg in Ωt × [0, tmax ],

∇ · u = 0 in Ωt × [0, tmax ],

where

u = (u1, u2, u3)T denotes the velocity,

σ is the full stress tensor,

ρ is the density of ice,

g = (0, 0,−g) denotes the gravitational acceleration,

Ωt = {(x , y , z) | b(x , y) ≤ z ≤ s(x , y , t) for (x , y) ∈ ΩH , t ∈ [0, tmax ]}.
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Mathematical Modeling of Ice Sheet Flow

Instantaneous Momentum Balance

The full stress tensor σ can be decomposed in terms of deviatoric stress τ
and the static pressure p as

σ = τ − pI

where p = − 1
3 tr(σ).

Assume that the entire material derivative du
dt is neglected because the time

scale of variations of the velocity and pressure fields is large.

=⇒ The momentum balance equation

−∇ · τ +∇p = ρg in Ωt × [0, tmax ]. (1)

The strain rate tensor ε̇u is the function of displacement speed defined as

ε̇u =
1

2
(∇u +∇uT )

and the effective strain rate εu is defined as εu =
√

1
2 ε̇u : ε̇u.
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Mathematical Modeling of Ice Sheet Flow

Constitutive Law

The constitutive law for ice relates the deviatoric stress τ to the strain rate tensor
ε̇u by the generalized Glen’s flow law

τ = 2ηuε̇u

with the viscosity

ηu =
1

2
A−1/nεu

(1−n)/n,

where

n is the power-law exponent,

ηu is the temperature- and strain rate-dependent rheology coefficient.

A denotes the deformation rate factor (Glen’s flow law), that obeys an
Arrhenius relation defined by A = A(T ) = a exp

(
− Q

RT

)
where

a is an empirical flow constant, Q denotes the activation energy, R the
universal gas constant.
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Mathematical Modeling of Ice Sheet Flow

Boundary Conditions for Dynamics

At the top surface Γs of the ice sheet, we impose the boundary condition

σ · n = −patm · n on Γs

Along the lateral boundary Γ` we impose one of three types of boundary
conditions: a condition such as the above one (air or water); a zero
boundary condition u = 0; or periodic boundary conditions.

On the bottom surface Γb, we set the following conditions:

u = 0 on Γb,fix

which is referred to as the no-slip boundary condition and

u · n = 0 and n · σ · t = −β2u · t on Γb,sld

which is referred to as the Rayleigh friction boundary condition.

The nonlinear Coulomb friction law could be used too.
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Mathematical Modeling of Ice Sheet Flow

Ice Temperature Evolution

The governing equation for the temperature in the ice sheet is given by

ρc
∂T

∂t
+ ρcu · ∇T = ∇ · (κ∇T ) + 2ηuε̇u : ε̇u in Ωt × [0, tmax ], (2)

where

c and κ denote the specific heat capacity and thermal conductivity of ice,
that are assumed to be independent of ice temperature.

Non-steady and advective changes in temperature (the first and second
terms on the left-hand side respectively) are balanced by temperature
diffusion and internal strain heating (the first and second terms on the
right-hand side respectively).

Suitable boundary conditions for temperature.
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Mathematical Modeling of Ice Sheet Flow

Ice Thickness Evolution

The ice-sheet geometry evolution equation, derived from the local mass
conservation, is given by

∂H

∂t
= −∇ · (uH) + m in ΩH × [0, tmax ], (3)

where

H = s − b denotes the ice thickness,

u is the vertically averaged velocity,

m denotes a source/sink term resulting from the ice sheet surface mass
balance (i.e., climate driven accumulation or melting of ice) and basal mass
balance (i.e., melting or freezing of ice at the ice-bedrock interface).
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Mathematical Modeling of Ice Sheet Flow

Model Parameters and Physical Constants

Symbol Constant Value Unit
ρ Density of ice 910 kg m−3

g Acceleration due to gravity 9.81 m s−2

n Power in Glen’s law 3 -
T0 Triple point of water 273.15 K
G Geothermal heat flux 4.2 x 10−2 W m−2

k Thermal conductivity of ice 2.1 W m−1K−1

c Specific heat capacity of ice 2009 J kg−1K−1

γ Clausius-Clapeyron gradient 8.66 x 10−4 K m−1

a Tuning parameter 3.61× 10−13 if T < 263.15 K Pa−3s−1

1.73× 10−13 if T ≥ 263.15 K
Q Activation energy 6.0× 104 if T < 263.15 K J mol−1

13.9× 104 if T ≥ 263.15 K
R Gas constant 8.314 J mol−1K−1

Seconds per year 31556926
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Computational Ice Sheet Model - Discretization and Solution

Finite Element Spaces

Let Th denote a tetrahedral triangulation of the 3D ice sheet domain Ωt .

P0,h(Th): the piecewise constant polynomial finite element space.

P1,h(Th): the continuous piecewise linear polynomial finite element space.

P2,h(Th): the continuous piecewise quadratic polynomial finite element space.

P1+0,h(Th) consists of functions in P1,h(Th) and P0,h(Th).

Then

(P̃2,h(Th), P1,h(Th)) is called the Taylor-Hood element pair (P2/P1) for
velocity and pressure.

(P̃2,h(Th), P1+0,h(Th)) is called the Enriched Taylor-Hood element pair
(P2/P1+P0) for velocity and pressure.

where
P̃2,h(Th) = {uh ∈ (P2,h(Th))3 |uh|Γl∪Γb,fix = 0, (uh · n)|Γb,sld = 0}.
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Computational Ice Sheet Model - Discretization and Solution

Taylor-Hood vs. Enriched Taylor-Hood

The Taylor-Hood element pair (P2/P1) and the enriched Taylor-Hood element pair

(P2/P1+P0) where the circles denote the position of velocity DOFs and the triangles

that of pressure DOFs.

The enriched T-H element discretization has about 24% more DOFs than
the T-H element discretization (nv : ne : nt ≈ 1 : 7.77 : 6.77).
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Computational Ice Sheet Model - Discretization and Solution

FE Discretization of the Stokes Ice Dynamics

The Taylor-Hood finite element ice dynamics model [Leng et. al, JGR 2012]:

seek functions uh ∈ P̃2,h(Th) and ph ∈ P1,h(Th) such that
∫

Ωt

2ηuh ε̇uh : ε̇vh dx +

∫
Γb,sld

β2uh · vh ds −
∫

Ωt

ph∇ · vh dx = ρ

∫
Ωt

g · vh dx,

−
∫

Ωt

qh∇ · uh dx = 0,

(4)

for all vh ∈ P̃2,h(Th) and qh ∈ P1,h(Th).

The enriched Taylor-Hood finite element ice dynamics model [Leng et. al,
JCP 2014]: replace P1,h(Th) by P1+0,h(Th) in (4).

The enriched Taylor-Hood finite element model greatly enhances local
mass conservation since holds∫

T

∇ · uh dx = 0,

i.e., exactly local mass conserved for any T ∈ Th.
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Computational Ice Sheet Model - Discretization and Solution

Nolinear Solver: Picard Iterations

A direct Picard-type iterative algorithm is to solve the nonlinear system, in which
the variables used for evaluation of the velocity-dependent viscosity ηu for the j-th
step are taken from the (j − 1)-th iteration step of the algorithm as follows:

∫
Ωt

2η
u

(j−1)
h

ε̇
u

(j)
h

: ε̇vh dx +

∫
Γb,sld

β2u
(j)
h · vh ds −

∫
Ωt

p
(j)
h ∇ · vh dx = ρ

∫
Ωt

g · vh dx,

−
∫

Ωt

qh∇ · u
(j)
h dx = 0.

(5)

Finally, set uh = u
(j)
h when satisfactory convergence is achieved.

It is robust with respect to the initial guess for the solution, but is at best
linearly convergent for solving the nonlinear finite element Stokes system.

It is time consuming for long-time and large-spatial scale simulations in
practical applications, such as decades to century scale, whole-ice sheet
simulations of Greenland and Antarctica.
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Computational Ice Sheet Model - Discretization and Solution

Nolinear Solver: Newton Iterations

The Newton method is to seek δuh and δph such that

∫
Ωt

A−1/3ε
−2/3

u
(j−1)
h

(
ε̇δuh

−
2

3

1(
2ε2

u
(j−1)
h

) (ε̇δuh
: ε̇

u
(j−1)
h

)ε̇
u

(j−1)
h

)
: ε̇vh dx

+

∫
Γb,sld

β2δuh · vh ds −
∫

Ωt

δph∇ · vh dx = −Resj−1
u ,

−
∫

Ωt

qh∇ · δuh dx = −Resj−1
p .

(6)

where Resj−1
u and Resj−1

p are the residuals of (4) for the approximations uj−1
h and

pj−1
h , respectively. The approximate solution at the jth step of the Newton

method is given by uj
h = uj−1

h + δuh and pj
h = pj−1

h + δph.

The diffusion part of the above variational problem is coercive.

The Newton nonlinear iterative solver is quadratically convergent but are
much less robust with respect to the initial solution guess.
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Computational Ice Sheet Model - Discretization and Solution

Hybrid Picard-Newton Iterative Algorithm

Hybrid approach [Leng et. al, CiCP 2014] – first run the Picard iteration
for a few steps to provide a good initial guess for the Newton iteration,
which then takes over until the solution converges. This approach provides a
powerful and efficient tool for solving the nonlinear Stokes system.

Both the Picard and Newton methods produce, at each step, the linear finite
element problems respectively, which are symmetric saddle-point problems:(

F BT

B 0

)(
~u
~p

)
=

(
~r
0

)
. (7)

Efficient parallel linear system solvers based on MPI for (7) are developed in
[Leng et. al, JGR 2012; Leng et. al, CiCP 2014].

Linear system solver: Domain Decomposition + FGMRES +
Preconditioner (Additive Schwartz Method + Local Direct Solver )
The “PHG” (Parallel Hierarchical Grid) and “MUMPS” (MUltifrontal
Massively Parallel Sparse direct solver) Packages.
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Computational Ice Sheet Model - Discretization and Solution

FE Discretization of the Temperature Equation

A few difficulties arise when solving the temperature equation:

The problem is advection-dominated in the horizontal directions,
The melting point constraint needs to be satisfied.

Use the SUPG-FEM (Streamline Upwind Petrov-Galerkin Finite Element
Method) to stabilize the numerical scheme: seek Th ∈ P3,h(Th) satisfying
Th|Γs = Tsurf,h∫

Ωt

(
ρc
∂Th

∂t
φh + ρcuh · ∇Thφh + κ∇Th · ∇φh + µρc(uh · ∇Th)(uh · ∇φh)

)
dx

=

∫
Ωt

2ηuh,Th
ε̇uh : ε̇uhφh dx

(8)

for all φh ∈ P2,h(Th) and φh|Γs = 0, where the stabilization parameter µ is
set to be µ = h/(2‖uh‖2) with h chosen locally as the diameter of the
tetrahedron.
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Computational Ice Sheet Model - Discretization and Solution

FV Discretization of the Ice Thickness Equation

Let QH denote the two-dimensional triangulation of the horizontal extent
ΩH of the ice-sheet. For each vertex vi of QH , we build a patch around vi

and then extend the two-dimensional patch in the vertical direction to create
a volumetric patch Pi in the layered tetrahedral mesh Th.

The explicit finite volume scheme for updating the ice thickness:

(Hn+1
i − Hn

i )Si

∆t
=
∑

j

F n
j + mi Si , (9)

where Hn
i denotes the ice thickness at the vertex vi at time tn, {F n

j } is the
set of fluxes at all lateral faces of the control volume Pi .

The flux F n is upwinded to stabilize the scheme in space; specifically,

F n
j =

{
uj · nj ljH

−
j if uj · nj > 0

uj · nj ljH
+

j otherwise,

where lj is the horizontal length of the jth lateral face, H −
j is the average

height inside the control volume, and H +
j is the average height in the

neighboring control volume of the jth lateral face.
Lili Ju, USC FE Ice Sheet Dynamics with ETH CSE 2015, March 14, 2015 17 / 33



Numerical Experiments

Outline

1 Background

2 Mathematical Modeling of Ice Sheet Flow

3 Computational Ice Sheet Model - Discretization and Solution

4 Numerical Experiments
Tests of the Stokes ice dynamics solver
Tests of thermo-mechanically coupled ice sheet evolution

5 Conclusions

Lili Ju, USC FE Ice Sheet Dynamics with ETH CSE 2015, March 14, 2015 18 / 33



Numerical Experiments Tests of the Stokes ice dynamics solver

ISMIP-HOM Benchmark Test – Experimental Setup

The ISMIP-HOM benchmark experiments focus on the diagnostic, 3D flow
field within an idealized, predominantly rectangular slab of isothermal (the
flow rate factor A ≡ 10−16) ice with length L and average thickness 1 km,
resting on a sloping surface.

ISMIP-HOM Experiments A-B (Left) and C-D (right)

Exps. A and B (α = 0.5◦) have a zero-velocity Dirichlet BC on the
basal surface.
Exps. C and D (α = 0.1◦) include a Rayleigh basal sliding BC with a
periodic, specified pattern of the basal traction parameter β2.

We conduct Exps. A-D on a 40× 40× 20 structured tetrahedral grid
(192,000 tetrahedral elements and 827,604 DOFs).
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Numerical Experiments Tests of the Stokes ice dynamics solver

ISMIP-HOM Benchmark Test – Simulation Results of Exp. A

Simulation results at different length scales for Experiment A (Ice flow with no-slip). From top
to bottom: the components u1, u2, and u3 of the top surface velocity (m a−1); from left to
right: L = 5, 10, 20, 40, 80, 160 km.
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Numerical Experiments Tests of the Stokes ice dynamics solver

ISMIP-HOM Benchmark Test – Simulation Results of Exp. C

Simulation results at different length scales for Experiment C (Ice flow with basal slip). From
top to bottom: the components u1, u2, and u3 of the top surface velocity (m a−1); from left to
right: L = 5, 10, 20, 40, 80, 160 km.
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Numerical Experiments Tests of the Stokes ice dynamics solver

ISMIP-HOM Benchmark Test – Picard vs. Hybrid Methods

ISMIP-HOM Experiments A and C with L= 5, 10, 20, 40, 80, 160 km. Solid lines: Exp. A with
Picard method. Solid lines with asterisk: Exp. A with Picard-Newton method. Dashed lines:
Exp. C with Picard method. Dashed lines with plus: Exp. C with Picard-Newton method.
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Numerical Experiments Tests of thermo-mechanically coupled ice sheet evolution

Analytic Solution Test – 3D Stokes Solution Construction

An idealized rectangular slab of isothermal ice sheet with length L and
average thickness Z = 1 km, resting on a sloping surface with a mean slope
of α = 0.5◦. Let s0(x , y) = −x tan(α).

The fixed smooth basal topography is defined as a series of 500m amplitude
sinusoidal oscillations about the mean bed elevation:

b(x , y) = s0(x , y) + η(x , y)− Z .

with η(x , y) = Z
2 sin

(
2πx

L

)
sin
(

2πy
L

)
.

Due to ice sheet flow and accumulation at the surface, the top surface of the
ice sheet slowly evolves from flat with a uniform slope to sinusoidal in shape:

s(x , y , t) = s0(x , y) + η(x , y)ξ(t)

with ξ(t) = 1− e−ct t where ct is a parameter that controls the rate of ice
thickness change.

No-slip boundary condition is applied at the bottom surface, and periodic
boundary condition is applied at the lateral surface.
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Numerical Experiments Tests of thermo-mechanically coupled ice sheet evolution

Analytic Solution Test – 3D Stokes Solution Construction

Illustration of the ice-sheet geometry (the top and bottom surfaces) at the time
t = 0 (left) and at the time t = 1000 years (right). The middle figure is the
x-direction profiles taken at y = L/4 of the ice-sheet top and bottom surfaces at
100 year time intervals from t = 0 to 1000 years.
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Numerical Experiments Tests of thermo-mechanically coupled ice sheet evolution

Analytic Solution Tests – 3D Stokes Solution Construction

A manufactured solution satisfies the compensated Stokes equation and the
boundary conditions is then given by [Leng et. al, The Cryopshere 2013]:

u(x , y , z, t) = c1

[
1−

(
s − z

s − b

)4
]
,

v(x , y , z, t) =
c2

s − b

[
1−

(
s − z

s − b

)4
]

−
1

2

c1

s − b

[
1−

(
s − z

s − b

)4
]

Z cos
(2πx

L

)
cos
(2πy

L

)
e−ct t ,

w(x , y , z, t) = u(x , y , z, t)
(∂b

∂x

s − z

s − b
+
∂s

∂x

z − b

s − b

)
+v(x , y , z, t)

(∂b

∂y

s − z

s − b
+
∂s

∂y

z − b

s − b

)
.

and

p(x , y , z, t) = −2ηu
∂u

∂x
− 2ηu

∂v

∂y
+ ρg(s − z).

where c1 and c2 are parameters to control the velocity falling within a
reasonable range.
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Numerical Experiments Tests of thermo-mechanically coupled ice sheet evolution

Analytic Solution Test – Ice Sheet Dynamics: T-H vs. Enriched T-H

Convergence and local mass conservation comparisons:

The enriched T-H model at the initial state t = 0

Mesh Velo. Conv. Pres. Conv. max|div(u)|
Error Rate Error Rate

20×20×5 5.53× 100 - 5.46× 10−1 - 6.71× 10−9

40×40×10 7.77× 10−1 2.83 1.80× 10−1 1.59 3.44× 10−10

80×80×20 1.53× 10−1 2.34 5.67× 10−2 1.67 5.89× 10−10

160×160×40 3.57× 10−2 2.16 1.66× 10−2 1.77 1.17× 10−10

The T-H model at the initial state t = 0

Mesh Velo. Conv. Pres. Conv. max|div(u)|
Error Rate Error Rate

20×20×5 6.21× 100 - 5.34× 10−1 - 1.04× 10−4

40×40×10 6.26× 10−1 3.40 1.79× 10−1 1.62 2.19× 10−4

80×80×20 6.69× 10−2 3.33 5.62× 10−2 1.66 1.11× 10−4

160×160×40 8.49× 10−3 3.22 1.64× 10−2 1.70 5.59× 10−5
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Numerical Experiments Tests of thermo-mechanically coupled ice sheet evolution

Analytic Solution Test – Parallel Scalability: T-H vs. Enriched T-H

Running time and weak scalability comparisons (the cluster “Hopper” at NERSC):

Weak scalability for the enriched T-H model

Mesh Size DOFs Number NOIs- Total Scalability
of Procs nonlinear Time (sec) Sweak

20 × 20 × 20 253,200 16 8 152 -
40 × 40 × 20 1,012,800 64 8 228 0.67
80 × 80 × 20 4,051,200 256 8 270 0.56

160 × 160 × 20 16,204,800 1024 8 356 0.43

Weak scalability for the T-H model

Mesh Size DOFs Number NOIs- Total Scalability
of Procs nonlinear Time (sec) Sweak

20 × 20 × 20 205,200 16 8 117 -
40 × 40 × 20 820,800 64 8 159 0.73
80 × 80 × 20 3,283,200 256 8 206 0.57

160 × 160 × 20 13,132,800 1024 8 298 0.39
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Numerical Experiments Tests of thermo-mechanically coupled ice sheet evolution

Analytic Solution Test – Thickness Evolution: T-H vs. Enriched T-H

Distribution of the errors of the simulated top surface elevation (m) by the the enriched

T-H element model (top) and the T-H element model (bottom) for the time-dependent

ice-sheet flow experiment. From left to right: at 100, 300, and 1,000 years.
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Numerical Experiments Tests of thermo-mechanically coupled ice sheet evolution

Analytic Solution Test – Thickness Evolution: T-H vs. Enriched T-H

Plot of the average absolute errors (left) of the simulated top surface elevation s (m) and

the total volume (right) of the ice sheet at each of the time steps for the time-dependent

ice-sheet flow experiment using the grid of resolution 80× 80× 20 and a time step size

of 2 years. Red: the enriched T-H element model; green: the T-H element model.

Lili Ju, USC FE Ice Sheet Dynamics with ETH CSE 2015, March 14, 2015 28 / 33



Numerical Experiments Tests of thermo-mechanically coupled ice sheet evolution

EISMINT-II Benchmark Test – Overview

The European Ice-Sheet Modeling Initiative (EISMINT) consists of a series
of idealized prognostic experiments for studying the behavior of models
designed to simulate ice-sheet evolution.

The second phase of that set of experiments, EISMINT-II, focused on
thermo-mechanically coupled ice-flow evolution.

Feature a square domain [0, 1500km]2;
Assume a radially symmetric ice-sheet geometry and boundary
conditions with radially symmetric and idealized climate forcing – ice
accumulation rate M, the circle of radius Rel, ice-sheet surface
temperature Tsurf , etc.;
Depending on the experiment, no-slip or sliding basal boundary
conditions are prescribed.

While all SIA-based models tested showed considerable agreement in their
predictions,

Symmetry is often broken and distinct, regularly spaced “cold-ice
spokes” appear.
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Numerical Experiments Tests of thermo-mechanically coupled ice sheet evolution

EISMINT-II Benchmark Test – Steady State of Exps. A, B, C

From left to right: the velocity magnitude on the xz-plane, the temperature (K) on the
xz-plane, and the basal temperature on the xy -plane. From top to bottom: Exps. A, B, C.
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Numerical Experiments Tests of thermo-mechanically coupled ice sheet evolution

EISMINT-II Benchmark Test – Steady State of Exps. D, F, G

From left to right: the velocity magnitude on the xz-plane, the temperature (K) on the
xz-plane, and the basal temperature on the xy -plane.
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Numerical Experiments Tests of thermo-mechanically coupled ice sheet evolution

On the Cold Spoke Instability – What cause it?

Simulation results of basal temperature on the xy -plane of steady states of the
EISMINT-II Exp. F on the structured grid 60× 60× 10 [Leng et. al, 2014]

By the SIA ice dynamical core in the Community Ice Sheet Model (CISM)

By our parallel computational 3D Stokes ice sheet model
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Conclusions

Concluding Remarks

We have developed “FELIX- Stokes” – a parallel computational model of
higher-order discretization accuracy and variable grid resolution capability for
simulating the 3D, thermo-mechanical behavior of ice sheets.

The nonlinear Stokes equations are solved using a hybrid
Picard-Newton solver, which reduces the number of iterations needed
for convergence significantly when compared to the Picard solver alone.
The enriched Taylor-Hood finite element greatly enhances local mass
conservation over the classic one for the ice sheet dynamics modeling.
The thermomechanically coupled model can be applied to large-scale
problems, and is physically reliable over very long time integrations.
When applying our model to the EISMINT-II experiments for ice sheet
evolution, we find no evidence for the cold spoke instabilities seen by
using lower-order approximations.
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